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1. 

An earlier study in reference [1] has demonstrated the complications in placing physically
dual as well as non-dual actuator–sensor pairs on one dimensional structures. In particular,
it outlines the unconditional stability domains of an active damping SISO control system
in the parameter space expanded by the sensor and actuator co-ordinates. It shows that
colocated physically dual actuator–sensor pairs guarantee unconditional stability whereas
physically non-dual pairs do not admit to the same generalization. In that paper, the
unconditional stability domain was investigated by excluding non-minimum phase systems
from the stability domain. However, minimum phase systems can be unstable for
intermediate values of feedback gain. The present paper presents the unconditional
stability domains when the system is either minimum phase or non-minimum phase and
hence accounts for all possible cases of instability. The effect of damping on the stability
domain is also studied in this paper. This study shows that a system can change its stability
characteristics quite significantly as the structural damping is altered. While most results
in the paper are numerical, analytical derivations for a two-mode case are presented. It
should be noted that the present paper addresses one of the issues related to decentralized
structural controls with colocated dual sensor–actuator pairs, viz., the stability robustness
of the system with respect to the placement of sensors and actuators [2–7]. This control
design has a potential to substantially reduce the complexity and cost of controllers for
high dimensional systems [8–14]. It is well known that for dual sensor–actuator pairs,
colocation guarantees the unconditional stability of the closed loop system. Such
unconditionally stable systems allow large control gains without causing instability and
hence, may achieve superior performance. However, in reality, one may not always have
the luxury of having colocated dual sensors and actuators. From a practical point of view,
it is very important to know the regions to place sensors and actuators that lead to
unconditionally stable closed loop systems.

This paper uses the same simple structure as in reference [1] to illustrate the discussions.
The remainder of the paper is outlined as follows. In section 2, the mathematical statement
of the problem considered in the paper is presented, and the unconditional stability
conditions for minimum and non-minimum phase systems are discussed. In section 3,
numerical results of unconditional stability domains for an active damping SISO feedback
control system are presented.

2.   

Consider the deflection w(x, t) of a beam in terms of a finite modal function expansion
given by
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w(x, t)= s
n

i=1

Wi (x)hi (t), (1)

where Wi (x) are orthogonal eigenfunctions satisfying the necessary differential equation
and boundary conditions [15, 16]. In this paper, one considers a point force given by

u(x, t)= u(t)d(x− xi ), (2)

where xi is the co-ordinate of the control force on the beam. The control law is a velocity
feedback given by

u(t)=−KDẇ(x0, t), (3)

where x0 is the sensor location, and KD is the control gain. The stability of the closed loop
system is determined by the roots of the characteristic equation

1+KD G(s)=0, (4)

where s is the Laplace transform variable and G(s) is the open loop transfer function of
the system given by

G(s)= s s
n

k=1

Wk (xi )Wk (x0) t
n

j=1, j$ k

(s2 + cs+v2
j )> t

n

j=1

(s2 + cs+v2
j )0N(s)/D(s). (5)

Here, c is the damping coefficient for all the modes and vj is the natural frequency of the
jth mode.

2.1. Non-minimum phase systems
When some of the open loop zeros, i.e., the roots of the equation N(s)=0, lie on the

right side of the complex s-plane, the system is non-minimum phase and is conditionally
stable. In this case, there is an upper bound on KD , above which the closed loop system
becomes unstable. However, below this critical value of KD , the system may not be well
damped. In searching for unconditional stability domains, one first sees if the system is
non-minimum phase. This is done be checking the sign of the coefficients of the polynomial
N(s) and solving for the roots of the equation N(s)=0 as is done in reference [1]. This
reference has covered this case in detail.

2.2. Minimum-phase conditionally stable systems
A minimum phase system (i.e., all the open loop zeros and poles are on the left side

of the s-plane) may be conditionally stable. In this case, the closed loop system is
unstable for some intermediate values of KD . In this section, one seeks to exclude the sensor
and actuator locations on the beam that render the closed loop system only conditionally
stable when the open loop system is minimum phase.

Assume now that the system is minimum phase. One checks to see if the system is
unstable for some intermediate values of KD by checking if the root locus ever crosses the
imaginary axis. Note that this test is conclusive for both minimum phase and
non-minimum phase systems. However, this test is numerically more intensive. Hence, it
is better to apply the test only to the minimum phase case in order to save computational
effort. One rewrites the root locus equation in the form:

1
KD

=−
N(s)
D(s)

=−s s
n

k=1

wk (xi )wk (x0)
s2 + cs+v2

k
. (6)
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Let s=jv. When the root locus intersects the imaginary axis, one gets the following
expression for the gain KD :

1
KD

=−jv6 s
n

k=1

wk (xi )wk (x0)
[(v2

k −v2)−jcv]
(v2

k −v2)2 + c2v27. (7)

This implies that there exist real valued frequencies v that satisfy the conditions

s
n

k=1

wk (xi )wk (x0)
(v2

k −v2)
(v2

k −v2)2 + c2v2 =0, s
n

k=1

wk (xi )wk (x0)
cv2

(v2
k −v2)2 + c2v2 Q 0. (8)

The procedure to look for conditionally stable minimum phase systems is to find the
positive real roots of the first equation for v2 and then check the inequality.

2.3. Effect of damping
Increasing the structural damping generally moves the open loop poles and zeros to the

left of the s-plane. In case of certain non-minimum phase systems, a higher structural
damping can cause the open loop zeros in the right half s-plane to move over to the left
half and consequently make the system minimum phase. This crossover happens only in
certain cases when the actuator–sensor locations are not too far away from the
unconditional stability region. On the other hand, in case of minimum phase conditionally
stable systems, all the poles and zeros are in the left half s-plane to begin with. Adding
structural damping moves them further to the left causing the whole root locus to shift
into the left half s-plane. Hence, there is always a critical value of damping, cmin , which
will ensure unconditional stability of such systems. If the damping is increased beyond this
critical value, equation (8) will have no real valued roots, implying that the system is
unconditionally stable for all positive gains. The above discussions on the effect of damping
have been verified in the numerical results presented in section 3. In the next section, a
two-mode case is used to examine the sources of instability.

2.4. Two mode case
In order to get more physical insight into the system behavior as well as its instability,

an analytical study is performed on a model with only two modes. The root locus of
equation (4) is rewritten as

(s2 + cs+v2
1 ) (s2 + cs+v2

2 )+KD s[a1 (s2 + cs+v2
2 )+ a2 (s2 + cs+v2

1 )]=0, (9)

where a1 =w1 (xi )w1 (x0) and a2 =w2 (xi )w2 (x0). For unconditional stability, the roots of
this equation must always lie in the left half s-plane, i.e., they must have negative real parts
for all positive values of KD . Routh’s array is used to specify stability conditions [17]:

j1 =2c+KD (a1 + a2)q 0,

j2 =2c3 + (v2
1 +v2

2 )c+KD [3(a1 + a2)c2 +v2
1 a1 +v2

2 a2]+K2
D (a1 + a2)2cq 0,

j3 = j2 [(v2
1 +v2

2 )c+KD (v2
2 a1 +v2

1 a2)]− j2
1 v2

1 v2
2 q 0, (10)

where KD e 0. The first inequality requires that cq 0, and a1 + a2 q 0. In order for the
third inequality to hold for large gains, one must have a1 v2

2 + a2 v2
1 q 0. Furthermore, it

can be shown that there exists a minimum damping cmin such that the second and third
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inequalities hold for all KD e 0. This minimum damping has to be determined numerically.
In summary, one has the following conditions for unconditional stability:

Condition 1: cq cmin q 0; condition 2: a1 + a2 q 0; condition 3: a1 v2
2 + a2 v2

1 q 0.

It is interesting to consider what happens when the unconditional stability breaks down
for a minimum phase system. Let the two-mode case be used as an example to illustrate
the discussion. When the actuator and sensor are on the same side of the node of the second
normal mode shape, the open loop zero created by the first and second modes falls
in-between the open loop poles associated with these modes. The departure angle at these
poles as the gain increases from zero to positive infinite is always −180° plus or minus
a small angle [17]. Hence, the poles approach the zeros via a path completely in the left
side of the s-plane (see Figure 1(a)). When the actuator and sensor pair are placed on either
side of the node, one gets v2

1 a1 +v2
2 a2 Q 0 and the zero moves to the region above the

pole corresponding to the second mode. Now the departure angle at the second mode pole
becomes 0° plus or minus a small angle. This pole then approaches the zero via a path
swinging to the right of the pole (see Figure 1(b)). Depending on the level of damping c,
the path may or may not cross the imaginary axis. When it does cross the imaginary axis,
the minimum phase system becomes conditionally stable. One will see later that the
damping in the system determines how far apart an actuator and sensor can be when they
are placed on either side of a node in order to guarantee unconditional stability.

3.    

The same cantilever beam made of aluminum as in reference [1] is used in this study.
The length of the beam is 1·0 m, the width is 0·1 m and the thickness is 0·01 m. Extensive
computations have been done to delineate the unconditional stability domains in the
(xi , x0) parameter space. Figure 2 shows the unconditional stability domain for the
non-minimum phase case only, from reference [1]. Figure 3 shows the same results when
both the minimum phase and non-minimum phase cases are included. The damping
coefficient c is 1·0 Ns/m. As can be seen from the figures, the unconditional stability
domains in Figure 3 are far smaller than in Figure 2, suggesting the frequent occurrence
of instability in the intermediate ranges of feedback gain.

Similar remarks regarding the property of the unconditional stability domains and the
effect of number of modes, i.e., the bandwidth of the system, to those in reference [1] can
be made based on the numerical simulations: (1) As the number of modes increases, the

Figure 1. Root loci for the two mode system. (a) Unconditionally stable; c=1 Ns/m; (xi , x0)= (0·3, 0·6). (b)
Conditionally stable; c=1 Ns/m; (xi , x0)= (0·3, 0·8).



    163

Figure 2. Unconditional stability domain for a point force-linear velocity sensor pair on a cantilever. Results
from reference [1]; c=1 Ns/m. The number of modes is (a) 2, (b) 5 and (c) 10; xi is the actuator location and
x0 is the sensor location

unconditional stability domain in the (xi , x0) parameter space erodes away quickly. (2) The
physically dual and colocated sensor-actuator pair always leads to a stable system.

An interesting observation can be made regarding the maximum possible separation
between the actuator and sensor while unconditional stability is guaranteed. It is evident
from the figures that the best place for non-colocated pairs is in the region close to the
clamped end of the cantilever where there are fewer nodes of the mode shapes. However,
this region offers low control authority. As seen in Figure 3, there are narrow regions or
bottlenecks in the stability domain that separate relatively large regions of unconditional
stability domains. These bottlenecks are located at the nodes of the different participating
modes as shown in Figure 4, and become wider as the damping increases (see Figures 5
and 6). This observation implies that the placement of an actuator–sensor pair on two sides
of a node will likely destabilize the system and that the structural damping increases the
stability robustness with respect to the actuator-sensor placement. One also sees that
certain non-minimum phase implementations that are observed to be unstable in Figure 2
become unconditionally stable as the damping is increased (the holes in Figure 2 disappear
in Figures 5 and 6).

Figure 7 shows the root loci for the two mode system. The actuator–sensor pair
co-ordinates are (xi , x0)= (0·3, 0·8) and the loci are plotted for different damping values.
The exact critical damping obtained numerically from equation (8) is 183·4 Ns/m. The
effect of damping is clearly observable in the root loci.

The study of damping is extended to the system with more than two controlled modes.
For the five-mode case, the actuator–sensor location (xi , x0)= (0·3, 0·42) is found to be
outside the unconditional stability domain, and the system is minimum phase. Using
equation (8), one sweeps through the c-parameter space by increasing damping until the

Figure 3. Unconditional stability domain for a point force-linear velocity sensor pair on a cantilever;
c=1 Ns/m. Results were obtained by using the new search algorithm. The number of modes is (a) 2, (b) 5 and
(c) 10; xi is the actuator location and x0 is the sensor location.



   164

Figure 4. Unconditional stability domain for system with five modes superposed with nodal lines for all modes;
xi is the actuator location and x0 is the sensor location.

system becomes unconditionally stable. For this example, the critical damping is found to
be 722·4 Ns/m. The root loci of this system with (xi , x0)= (0·3, 0·42) and different damping
values are shown in Figure 8. The root loci indeed move to the left of the s-plane as
damping increases, and the system becomes unconditionally stable once the critical
damping is exceeded.

Figure 5. Unconditional stability domain for a point force-linear velocity sensor pair on a cantilever;
c=100 Ns/m. The number of modes is (a) 2, (b) 5 and (c) 10; xi is the actuator location and x0 is the sensor
location.

Figure 6. Unconditional stability domain for a point force-linear velocity sensor pair on a cantilever;
c=1000 Ns/m. The number of modes is (a) 2, (b) 5 and (c) 10; xi is the actuator location and x0 is the sensor
location.
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Figure 7. Root loci for the two mode system; (xi , x0)= (0·3, 0·8). (a) Conditionally stable; c=1 Ns/m. (b)
Unconditionally stable at the critical damping cmin =183·4 Ns/m. (c) Unconditionally stable at a higher value
of damping c=300 Ns/m.

Figure 8. Root loci for the two mode system; (xi , x0)= (0·3, 0·42). (a) Conditionally stable; c=1 Ns/m. (b)
Unconditionally stable at the critical damping cmin =772·4 Ns/m. (c) Unconditionally stable at a higher value
of damping c=1000 Ns/m.

4.  

A revised set of numerical results for unconditional stability domains in the (xi , x0)
parameter space of a SISO feedback control of a one dimensional structure has been
presented. A physically dual actuator–sensor pair is considered in the study. It is found
that instability can occur when the system is non-minimum phase as well as when it is
minimum phase. In some non-minimum phase and all minimum-phase cases, there is a
critical passive damping above which unconditional stability is guaranteed for all positive
gains. It has also been found that placing an actuator-sensor pair on either side of a node
of one of the participating modes will lead to a conditionally stable system when the system
damping is sufficiently low. Passive damping provides stability robustness with respect to
actuator–sensor placement. The study of this simple structure provides valuable insight
into the behavior of more complex control systems.
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